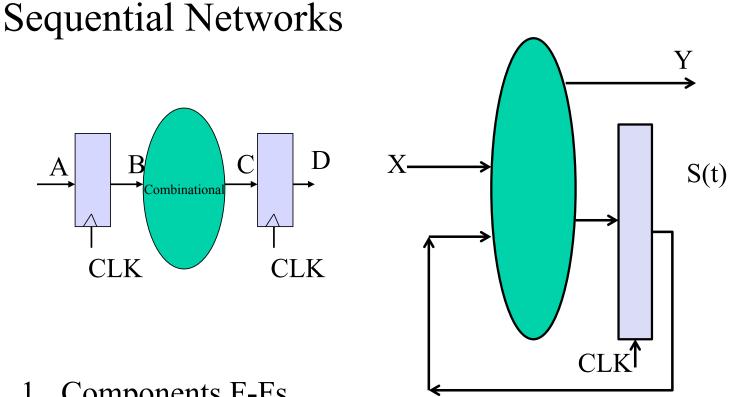
Lecture 8: Sequential Networks and Finite State Machines

CSE 140: Components and Design Techniques for Digital Systems Spring 2014

> CK Cheng, Diba Mirza Dept. of Computer Science and Engineering University of California, San Diego

> > 1



- 1. Components F-Fs
- 2. Specification
- 3. Implementation: Excitation Table

Specification

- Combinational Logic
 - Truth Table
 - Boolean Expression
 - Logic Diagram (No feedback loops)
- Sequential Networks: State Diagram (Memory)
 - State Table and Excitation Table
 - Characteristic Expression
 - Logic Diagram (FFs and feedback loops)

Specification: Finite State Machine

- Input Output Relation
- State Diagram (Transition of States)
- State Table
- Excitation Table (Truth table of FF inputs)
- Boolean Expression
- Logic Diagram

Specification: Examples

- Transition from circuit to finite state machine representation
 - Netlist => State Table => State Diagram => Input Output Relation
- Example 1: a circuit with D Flip Flops
- Example 2: a circuit with other Flip Flops

Building Sequential Circuits and describing their behavior

The Behavior Effects

How the customer explained it

How the project leader understood it

How the analyst designed it

How the programmer wrote it

How the business consultant described it

How the project was documented

How the customer

was billed

How it was supported

advertised

What the customer really needed

The Open Source version

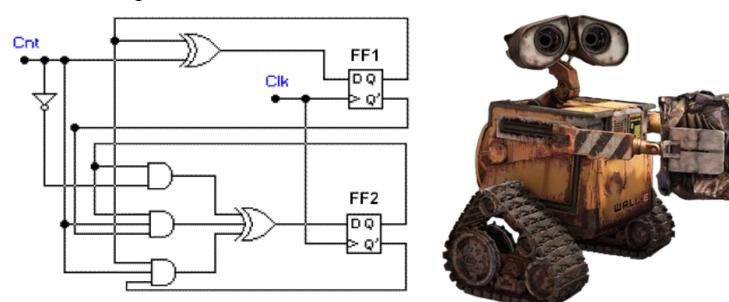
Create your own cartoon at www.projectcartoon.com

What we will learn:

1. Given a sequential circuit, describe its behavior over time

Sequential Circuit: Wall-E

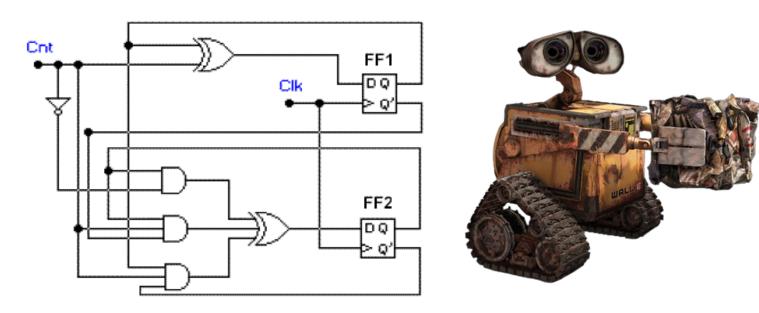
2. Given the behavior of a sequential circuit, implement the circuit



How does Wall-E behave?

What does it mean to describe the behavior of a sequential circuit

Specify how the output of the circuit changes as a function of inputs and the state of the circuit



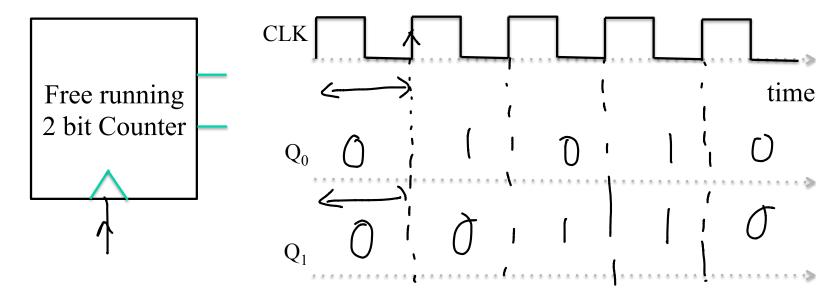
PI Q: What is the difference between the state of a circuit and its output?

- A. The output is independent of the state
- B. The output and state are the same thing
- C. The state is special type of output that is fed back into the circuit
- D. The state is input information that is independent of previous outputs

State: What is it? Why do we need it?

Symbol/ Circuit

Behavior over time

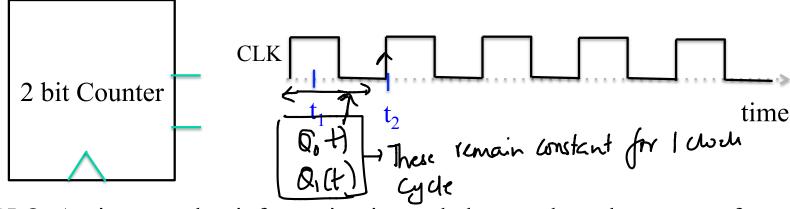


What is the expected output of the counter over time?

State: What is it ? Why do we need it?

Symbol/ Circuit

Behavior over time



PI Q: At time t_1 , what information is needed to produce the output of the counter at the next rising edge of the clock (i.e t_2)?

A. All the outputs of the counter until t_1

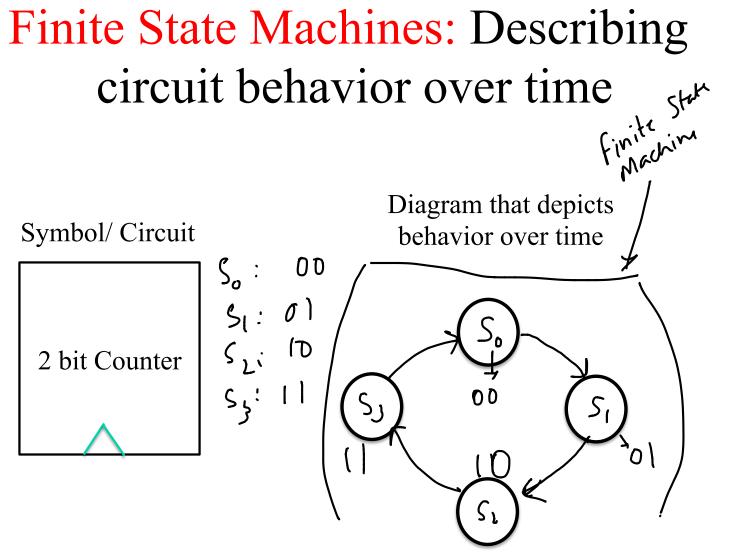
B. The initial output of the counter at time t=0

 \overrightarrow{C}) The output of the counter at current time t_1

D. We cannot determine the output of the counter at t_2 prior to t_{2}_{12}

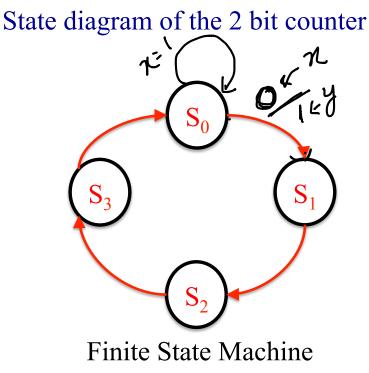
State: What is it ? Why do we need it?

- The state is distilled output information that tells us everything we need to know to produce the next output. That is why it is fed back into the circuit.
- In the case of the 2-bit counter the output (i.e. the current count) is also the state of the counter. But we could have had other outputs that were not part of the state. E.g. A signal that indicated whether the current count is greater than 2.

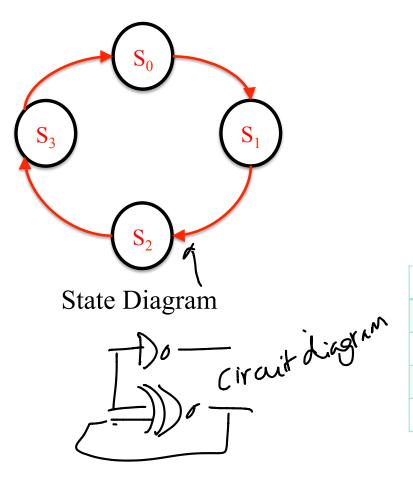


State Diagrams: Describing circuit behavior over time

- PI Q: What information is not explicitly indicated in the state diagram? A. The (input) to the circuit [7]
- B. The output of the circuit [y] C. The time when state transitions occur
 - D. The current state of the circuit.
 - E. The next state of the circuit.



Son (Q1lt),Q0(1)	ing -	Inpuh	Out	puts	
$\left(S_{0} \right) $ $\left(Q_{1}(t) Q_{0}(t) \right)$	} (Current stat	e Next S	state	
	S	50	\mathbf{S}_1		
$\left(\begin{array}{c} \mathbf{S}_{3} \end{array} \right) \qquad \left(\begin{array}{c} \mathbf{S}_{1} \end{array} \right) \begin{array}{c} \sum_{n=1}^{\infty} \left(\begin{array}{c} \mathbf{O}_{n} \mathbf{O} \right) \end{array}$	S	\mathbf{S}_1	S ₂		
(0)		\mathbf{S}_2	S ₃		
$5_1^{2} (1_1^{0})$) 5	53	\mathbf{S}_{0}		
)	4	Substitute	5,12,18,	× ۲
State Diagram	Q ₁ (t)	Q ₀ (t)	Q ₁ (t+1)	Q ₀ (t+1)	
	Ø	Ó	6	ſ	
2/ps.	C		1	σ	
		0	L	J	
			ى	J	
Write state d'agram in 1/p output from		State	Table	16	



Current state	Next State
S ₀	\mathbf{S}_1
S ₁	S_2
S ₂	S ₃
S ₃	S ₀

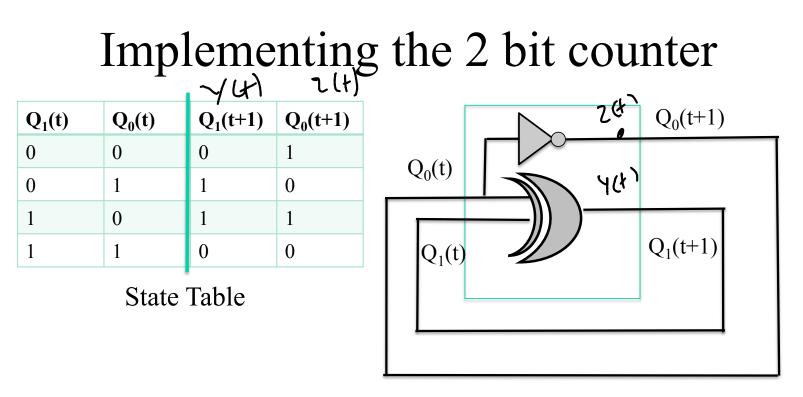
Q ₁ (t)	$Q_0(t)$	Q ₁ (t+1)	Q ₀ (t+1)
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0
L			

State Table

Inputs		Y(1) ZG)			
Q ₁ (t)	$Q_0(t)$	Q ₁ (t+1)	Q ₀ (t+1)		
0	0	0	1 (
0	1	1(-	0		
1	0	1 ८	1 C		
1	1	0	0		

PI Q: To obtain the outputs $Q_0(t+1)$ and $Q_1(t+1)$ from the inputs $Q_1(t)$ and $Q_0(t)$ we need to use:

A. Combinational logic 6040) B. Some other logic State Table $\overline{0}_{1}0_{0} + 0_{1}\overline{0}_{0}$ $Y(t) = Q_1(t) \otimes Q_0(t)$ $z(t) = \overline{O}_{n}(t)$ If we use D-flip flops. The next state follows (Y(+), Z(+)) $Q_1(++1) = Y(+)$ $Q_6(++1) = Z(+)$



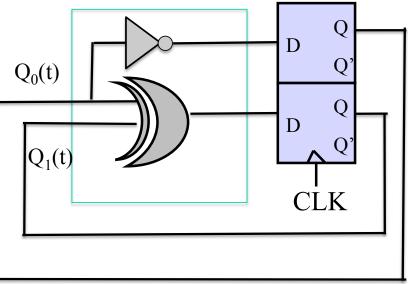
PI Q: What is wrong with the 2-bit counter implementation shown above

- A. The combinational circuit is incorrect
- B. The circuit state changes correctly but continuously rather than at the rising edge of the clock signal
 - The output of the circuit is unreliable because inputs can get corrupted

Q,44) Q,44) (ombinational) (0)0,(1) Nite: Qo (tin) Band on the current state, i.e. (Oo(+), O((+)), in this clock upde we will compute the inputs to the flip flips (Ya) JZLF)) which will determine the Value of the state in the next clock cycle i.e. (Qo(I+1), Q(I+1)).

			•				
Q ₁ (t)	Q ₀ (t)	Q ₁ (t+1)	Q ₀ (t+1)				
0	0	0	1				
0	1	1	0				
1	0	1	1				
1	1	0	0				
State Table							

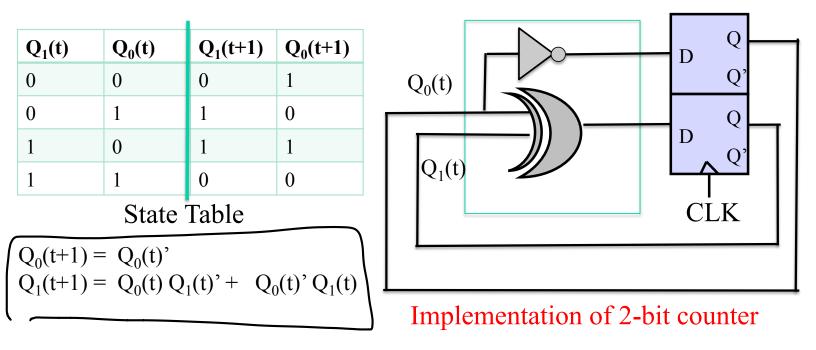
 $Q_0(t+1) = Q_0(t)'$ $Q_1(t+1) = Q_0(t) Q_1(t)' + Q_0(t)' Q_1(t)$



Implementation of 2-bit counter

We store the current state using D-flip flops so that:

- The inputs to the combinational circuit don't change while the next output is being computed
- The transition to the next state only occurs at the rising edge of the clock



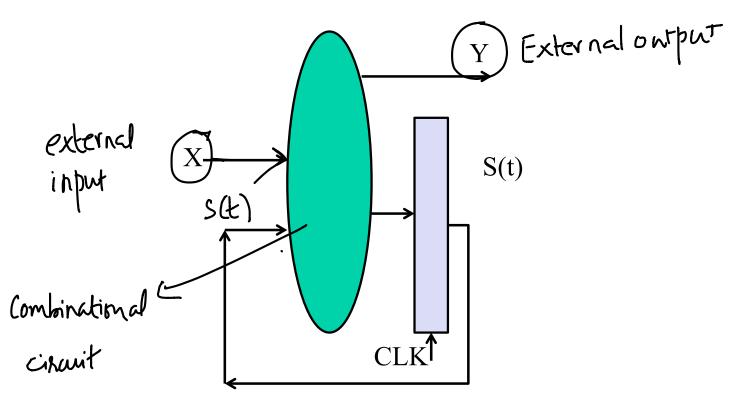
PI Q: When did we fix our choice of flip flops in the design process?

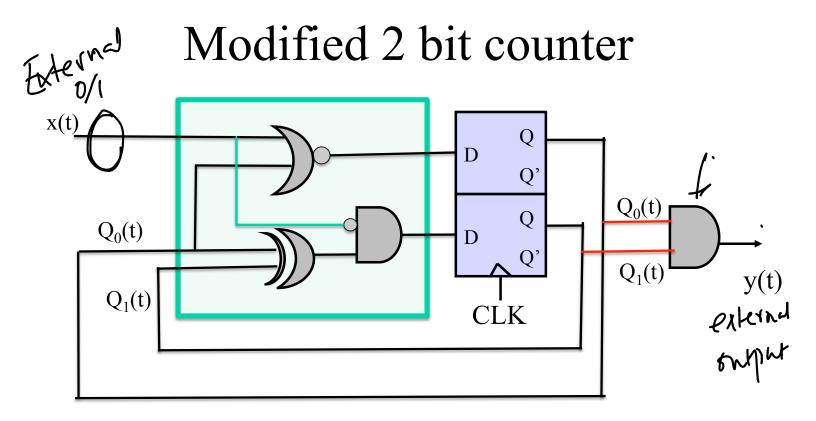
When we drew the state diagram

B

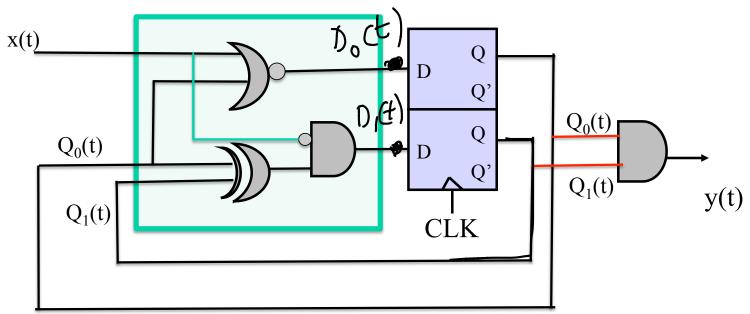
- When we wrote down the state table
- . When wrote the characteristic expression
- D. When we implemented the circuit from the characteristic expression 21

Generalized Model of Sequential Circuits





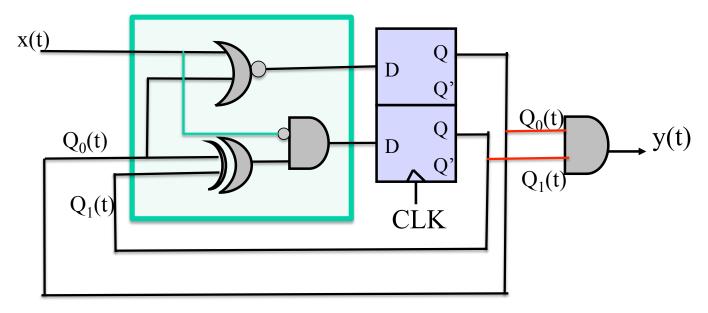
Modified 2 bit counter



Characteristic Expression:

$$D_{1}(t) = \overline{\chi(t)} \cdot \overline{Q_{0}(t)} + O_{1}(t)$$

Modified 2 bit counter



$$\begin{aligned} y(t) &= Q_1(t)Q_0(t) \\ Q_0(t+1) &= D_0(t) = x(t)' Q_0(t)' \\ Q_1(t+1) &= D_1(t) = x(t)' (Q_0(t) \oplus Q_1(t)) \end{aligned}$$

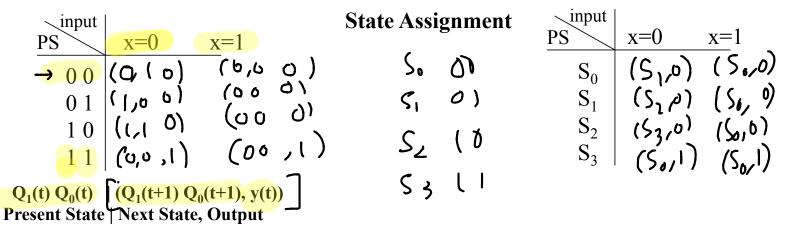
Netlist ⇔ State Table ⇔ State Diagram ⇔ Input Output Relation Characteristic Expression:

$$y(t) = Q_{1}(t)Q_{0}(t)$$

$$Q_{0}(t+1) = D_{0}(t) = x(t)'Q_{0}(t)'$$

$$Q_{1}(t+1) = D_{1}(t) = x(t)'(Q_{0}(t) \oplus Q_{1}(t))$$

State table



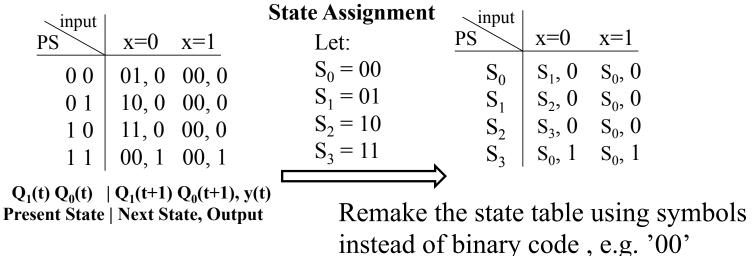
Netlist ⇔ State Table ⇔ State Diagram ⇔ Input Output Relation

$$y(t) = Q_1(t)Q_0(t)$$

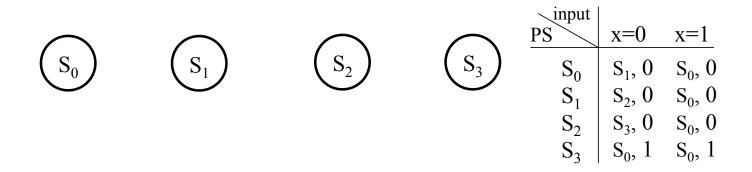
$$Q_0(t+1) = D_0(t) = x(t)' Q_0(t)'$$

$$Q_1(t+1) = D_1(t) = x(t)' (Q_0(t) \oplus Q_1(t))$$

State table



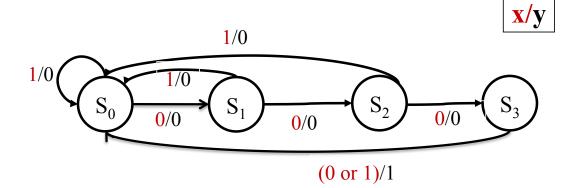
Netlist \Leftrightarrow State Table \Leftrightarrow State Diagram \Leftrightarrow Input Output Relation

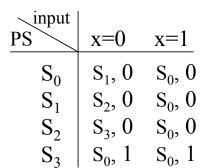


Given inputs and initial state, derive output sequence

Time	0	1	2	3	4	5
Input	0	1	0	0	0	-
State	S 0					
Output						

Netlist \Leftrightarrow State Table \Leftrightarrow State Diagram \Leftrightarrow Input Output Relation

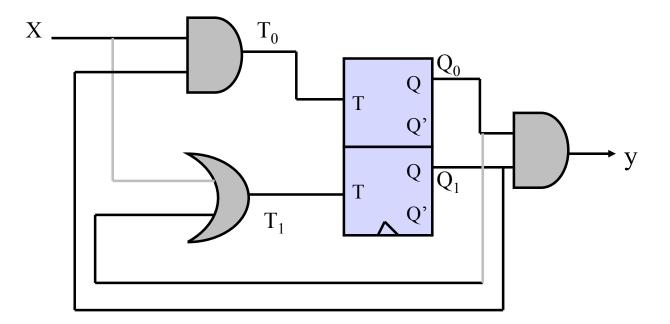




Example: Given inputs and initial state, derive output sequence

Time	0	1	2	3	4	5
Input	0	1	0	0	0	-
State	S 0	S 1	S 0	S 1	S 2	S 3
Output	0	0	0	0	0	1

Example 3 Circuit with T Flip-Flops



$$y(t) = Q_1(t)Q_0(t)$$

 $T_0(t) = x(t) Q_1(t)$
 $T_1(t) = x(t) + Q_0(t)$

Logic Diagram => Excitation Table => State Table

$$\begin{split} y(t) &= Q_1(t)Q_0(t) \\ T_0(t) &= x(t) \ Q_1(t) \\ T_1(t) &= x(t) + Q_0(t) \\ Q_0(t+1) &= T_0(t) \ Q'_0(t) + T'_0(t)Q_0(t) \\ Q_1(t+1) &= T_1(t) \ Q'_1(t) + T'_1(t)Q_1(t) \end{split}$$

Excitation Table: Truth table of the F-F inputs

id	$Q_1(t)$	$Q_0(t)$	X	$T_1(t)$	$T_0(t)$	Q ₁ (t+1)	$Q_0(t+1)$	у
0	0	0	0	0	0	0	0	0
1	0	0	1	1	0	1	0	0
2	0	1	0	1	0	1	1	0
3	0	1	1	1	0	1	1	0
4	1	0	0	0	0	1	0	0
5	1	0	1	1	1	0	1	0
6	1	1	0	1	0	0	1	1
7	1	1	1	1	1	0	0	1

Excitation Table: iClicker

In excitation table, the inputs of the flip flops are used to produce A.The present state B.The next state

Excitation Table => State Table => State Diagram

id	$Q_1(t)$	$Q_0(t)$	x	$T_1(t)$	T ₀ (t)	$Q_1(t+1)$	$Q_0(t+1)$	у
0	0	0	0	0	0	0	0	0
1	0	0	1	1	0	1	0	0
2	0	1	0	1	0	1	1	0
3	0	1	1	1	0	1	1	0
4	1	0	0	0	0	1	0	0
5	1	0	1	1	1	0	1	0
6	1	1	0	1	0	0	1	1
7	1	1	1	1	1	0	0	1

State Assignment S0 00 S1 01 S2 10 S3 11

PS \Input	X=0	X=1
S0		
S 1		
S2		
S3		

Excitation Table => State Table => State Diagram

id	$Q_1(t)$	$Q_0(t)$	X	$T_1(t)$	$T_0(t)$	Q ₁ (t+1)	$Q_0(t+1)$	у
0	0	0	0	0	0	0	0	0
1	0	0	1	1	0	1	0	0
2	0	1	0	1	0	1	1	0
3	0	1	1	1	0	1	1	0
4	1	0	0	0	0	1	0	0
5	1	0	1	1	1	0	1	0
6	1	1	0	1	0	0	1	1
7	1	1	1	1	1	0	0	1

State Assignment S0 00 S1 01 S2 10 S3 11

PS \Input	X=0	X=1
S0	S0,0	S2,0
S 1	S3,0	S3,0
S2	S2,0	S1,0
S3	S1,1	S0,1

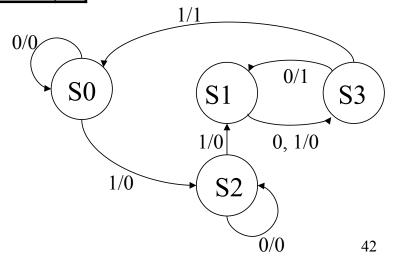
Excitation Table => State Table => State Diagram

id	$Q_1(t)$	$Q_0(t)$	x	$T_1(t)$	$T_0(t)$	Q ₁ (t+1)	Q ₀ (t+1)	у
0	0	0	0	0	0	0	0	0
1	0	0	1	1	0	1	0	0
2	0	1	0	1	0	1	1	0
3	0	1	1	1	0	1	1	0
4	1	0	0	0	0	1	0	0
5	1	0	1	1	1	0	1	0
6	1	1	0	1	0	0	1	1
7	1	1	1	1	1	0	0	1

State Assignment S0 00 S1 01 S2 10

S3 11

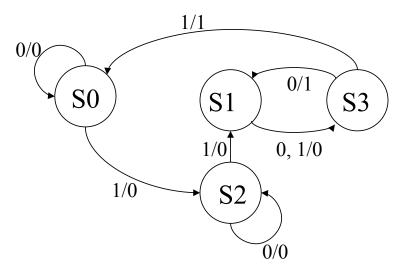
PS \Input	X=0	X=1
S0	S0,0	S2,0
S 1	S3,0	S3,0
S2	S2,0	S1,0
S3	S1,1	S0,1



Netlist \Leftrightarrow State Table \Leftrightarrow State Diagram \Leftrightarrow Input Output Relation

PS \Input	X=0	X=1
S0	S0,0	S2,0
S 1	S3,0	S3,0
S2	S2,0	S1,0
S3	S1,0	S0,1

Example: Output sequence

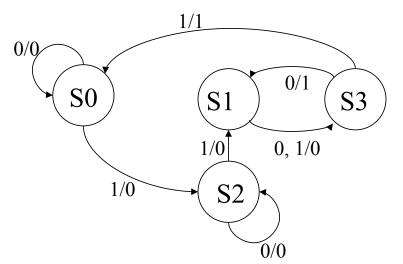


Time	0	1	2	3	4	5
Input	0	1	1	0	1	_
State	S 0					
Output						

Netlist \Leftrightarrow State Table \Leftrightarrow State Diagram \Leftrightarrow Input Output Relation

PS \Input	X=0	X=1
S0	S0,0	S2,0
S 1	S3,0	S3,0
S2	S2,0	S1,0
S3	S1,0	S0,1

Example: Output sequence



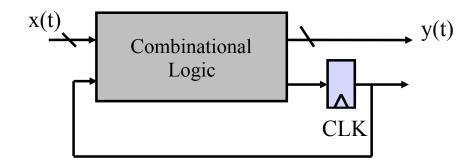
Time	0	1	2	3	4	5
Input	0	1	1	0	1	-
State	S 0	S 0	S2	S 1	S 3	S 0
Output	0	0	0	0	1	0

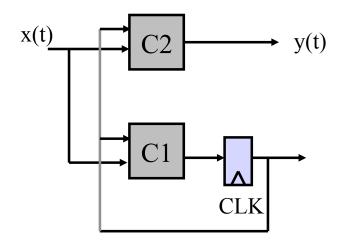
Implementation

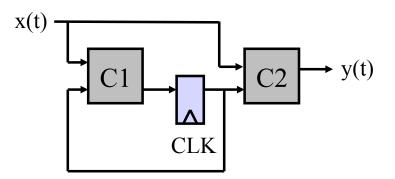
State Diagram => State Table => Logic Diagram

- Canonical Form: Mealy and Moore Machines
- Excitation Table
 - Truth Table of the F-F Inputs
 - Boolean algebra, K-maps for combinational logic
- Examples
- Timing

Canonical Form: Mealy and Moore Machines







Canonical Form: Mealy and Moore Machines

Mealy Machine: $y_i(t) = f_i(X(t), S(t))$ Moore Machine: $y_i(t) = f_i(S(t))$

 $s_i(t+1) = g_i(X(t), S(t))$

